EXPERIMENTAL MODELS OF METAL LEACHING FOR SCALING-UP TO THE FIELD

Part 1: Similitude Concept for Testing of Metal Leaching from Waste Rock Dumps

Part 2: Confirmation from the Field Data

Zhong-Sheng (Simon) Liu, Cheng Huang, Liang Ma, Eben Dy, Zhong Xie, Mike Aziz, Cody Meints, Kevin Morin, Mike O’Kane, Lindsay Tallon

Energy, Mining and Environment, National Research Council Canada, Vancouver, BC
Equity Silver Mine, Reclamation Operations, Goldcorp Inc. Houston BC, Canada
Minesite Drainage Assessment Group, Surrey, BC, Canada
O’Kane Consultants Inc., Calgary, AB, Canada
For technical discussions with
• NRCan (Bill Price and John Kwong)
• SRK (Stephen Day, Chris Kennedy)
• Stantec (Patrick Corser)
• BC Gov. (Andrew Rollo)
• EcoMetrix (Ron Nicholson)
• Newmont (Frank Roberto)
• Lorax (Jorgelina Muscatello et al)
NRC’s ARD-ML Research

Vision:
- To contribute to the Canada’s world-leading ARD-ML research
 - A Canadian hub
 - A center for ARD-ML data analysis
 - A center for scaling up testing to the field

Mission:
- To generate core/key knowledge and technologies for predicting and preventing ARD-ML and transfer them to Canadian companies
NRC’s ARD-ML Research

Target Clients
Primarily Canadian consulting companies who provide technical services to mining companies

Who gets benefits from the research

- The public in terms of reduced water pollution;
- Consulting companies in terms of improved global competitiveness
- Mining companies in terms of reduced cost and liability

NRC’s employees: 3,900
Research centers: over 20 across Canada

We do **not** compete with the Canadian Industry
Experimental models vs. the real field

Real Field

Rain-Water/snow-melt
Infiltration rate Q

Waste Rock Dump

Drainage chemistry C

\[C = f(q_1, q_2, q_3, q_4, \ldots) \]

Experimental Models

Water Infiltration rate Q

A sample of waste
rock dump

Drainage chemistry C

\[C = f(q_1, q_2, q_3, q_4, \ldots) \]
The problems with the experimental models

Problems

- Samples ≠ Population
- How to scale-up experimental results to the field?

Solutions

- Statistically sufficient number of samples; Mixing
- Make the experimental models similar to the field

But, what do you mean by similar?
Summary

1. A similitude concept is proposed here for designing the smaller-scale metal-leaching testing models. Based on the concept, the smaller-scale testing models are similar to the field when \(\left(\frac{Q}{k \lambda B} \right)_{Lab} = \left(\frac{Q}{k \lambda B} \right)_{Field} \), the similarity condition, one has, \(\left(\frac{C}{C_e} \right)_{Lab} = \left(\frac{C}{C_e} \right)_{Field} \).

Q: infiltration rate
k: kinetic constant of metal leaching
\(\lambda \): wet surface area within a unit volume of rocks
B: vertical depth of a waste rock dump or a column-leach cylinder
C: Concentration of a metal in drainage water
\(C_e \): Saturation concentration of a metal in drainage water

2. In terms of overall trend the concept is in agreement with the 30 years of ARD-ML monitoring data from Equity Silver mine site.
Part 1: Similitude Concept for Scaling-up smaller-scale metal leaching testing results to Waste Rock Dumps
Geometrical similarity of triangles allows for scaling up

\[
\text{Area} = f(a, b, c)
\]
\[
\text{Area} = a^x b^y c^z, \quad (x + y + z = 2)
\]
\[
\text{Area} = a^{2-y-z} b^y c^z
\]
\[
\text{Area} = a^2 \left(\frac{b}{a}\right)^y \left(\frac{c}{a}\right)^z
\]
\[
\frac{\text{Area}}{a^2} = f\left(\frac{b}{a}, \frac{c}{a}\right)
\]

When geometrical similarity holds, that is, \(\frac{b}{a} = \frac{b}{a} ; \frac{c}{a} = \frac{c}{a} \)

One has, \(f\left(\frac{b}{a}, \frac{c}{a}\right) = f\left(\frac{b}{a}, \frac{c}{a}\right) \)

So, one has, \(\frac{\text{Area}}{a^2} = \frac{\text{Area}}{a^2} \)
Make experimental models similar to the field

Step 1: List the significant quantities

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Symbol</th>
<th>Dimension</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal ion concentration</td>
<td>C</td>
<td>ML$^{-3}$</td>
</tr>
<tr>
<td>Water infiltration rate through a unit horizontal surface</td>
<td>Q</td>
<td>LT$^{-1}$</td>
</tr>
<tr>
<td>Wet surface area within a unit volume of rocks</td>
<td>λ</td>
<td>L$^{-1}$</td>
</tr>
<tr>
<td>Kinetic constant for metal leaching</td>
<td>k</td>
<td>LT$^{-1}$</td>
</tr>
<tr>
<td>The depth through which water flows</td>
<td>β</td>
<td>L</td>
</tr>
<tr>
<td>Saturation concentration</td>
<td>C_e</td>
<td>ML$^{-3}$</td>
</tr>
</tbody>
</table>

Kinetic constant for metal leaching

\[
\frac{dM}{dt} = -Ak(C - Ce)
\]
Make experimental models similar to the field

Step 2: Reduce the number of arguments

\[C = f(Q, \lambda, \beta, k, C_e) \]

\[C = f\left(\frac{Q}{\lambda}, \beta, k, C_e\right) \]

\(\frac{Q}{\lambda} \): amount of water flowing through the surfaces of a unit volume of rocks within a unit time

The Field

Rain-Water/snow-melt
Infiltration rate \(Q \)

Waste Rock Dump

Wet surface density: \(\lambda \)
Dump depth: \(\beta \)
Kinetic constant: \(k \)
Saturation concentration: \(C_e \)

Metal concentration \(C \)

\[C = f\left(\frac{Q}{\lambda}, \beta, k, C_e\right) \]
Make experimental models similar to the field?
Step 3: Further reduce the number of arguments by Dimensional Analysis

Buckingham π theorem

\[C = f \left(\frac{Q}{\lambda}, k, \beta, C_e \right) = \left(\frac{Q}{\lambda} \right)^x k^y (\beta)^z C_e^w \]

Using dimensional homogeneity, it gives

\[ML^{-3} = (L^2 T^{-1})^x (LT^{-1})^y L^z \quad (ML^{-3})^w \]

1 = w
0 = −x − y
−3 = 2x + y + z − 3w

w = 1
y = −x
z = −x

\[\frac{C}{C_e} = \left(\frac{Q}{k\lambda\beta} \right)^x = f \left(\frac{Q}{k\lambda\beta} \right) \]

One argument only, not four. A big deal!

Where “x” could be any number; f denotes a function of ().
Make experimental models similar to the field

Step 4: Similarity condition

\[
\frac{C}{C_e} = f\left(\frac{Q}{k\beta\lambda}\right)
\]

The ML (metal-leaching) similarity condition: make \(\frac{Q}{k\beta\lambda}\) constant, that is,

When the condition is met, \(\left(\frac{Q}{k\lambda\beta}\right)_{Lab} = \left(\frac{Q}{k\lambda\beta}\right)_{Field}\)

one has, \(\left(\frac{C}{C_e}\right)_{Lab} = \left(\frac{C}{C_e}\right)_{Field}\)

In this way, scaling up is done!
An illustrative example: determine the size of rocks in a leach-column testing so that scaling-up condition is met

Assume $k=k$, $Q=Q$, then, in order to make $\frac{Q}{k\beta\lambda}$ unchanged, i.e.,

$$\frac{Q}{k\beta\lambda} = \frac{Q}{k\beta\lambda}$$

One gets,

$$\frac{\lambda}{\lambda} = \frac{\beta}{\beta}$$

Note that d is proportional to $\sqrt{\lambda}$, so one has,

$$\frac{d}{d} = \sqrt{\beta}$$

Assume a waste rock dump’s height β and the leach column’s height β has the relation $\beta = 0.1\beta$, then, the rock sample to be tested should be ground into smaller size as $d=\sqrt{0.1}d=0.32d$, so that $C=C$.
The model tells the dependence of $C(\beta)$ upon infiltration rate Q as:

$$C(\beta) = C_e (1 - e^{-(k\lambda\beta)/Q})$$

Mass conservation:

$$\frac{dc(x)}{dx} = \frac{k}{hv} (C_e - C(x))$$

Boundary Condition: $C = 0$ when $x=0$

Solve for: $C = ?$ When $x=\beta$

$C = C_e (1 - e^{-(k\beta)/(hv)})$, when $x=\beta$

Note that $Q = \lambda hv$, so it can be written as $C = C_e (1 - e^{-(k\lambda\beta)/Q})$

Denote $\ln(1-C/Ce) = y$, and denote $1/Q = x$, so

$y = -(K\beta\lambda)x$, a straight line on a x-y plane, and its slope: $-(K\beta\lambda)$
Part 2: Conformation of the Models from the ARD-ML Monitoring data of the waste rock dump at Equity Silver Mine, BC, Canada

How to confirm: comparison between the model and the mine-site data

The experimental model gives a dependence of drainage metal concentration C on infiltration rate Q

The historical monitoring data of ARD-ML also gives the dependence of drainage metal concentration C on infiltration rate Q
The model shows the dependence of metal concentration C upon infiltration rate as:

$$\frac{C}{C_e} = 1 - e^{-(k\lambda\beta)/Q}$$

$$\ln\left(1 - \frac{C}{C_e}\right) = -\frac{(k\lambda\beta)/Q}{Q}$$
Equity Silver Mine

- Houston, BC
- Au, Ag, Cu mine
- 1980-1994 mining operation
- Closed in 1994
- Sulfide mine waste 80 million tons
- Effluent pH 2-3
- About $1.5M/year for effluent treatment
- $5M for the cover in 1994
ARD Ditches and Ponds at Equity Silver mine
The mine-site data shows the dependence of acidity C upon flow rate Q at C7 location on the ARD ditch.

March from 1998-2017

$$y = -0.4839x - 0.2558$$
$$R^2 = 0.1559$$

April from 1998-2017

$$y = 0.9541x - 0.2448$$
$$R^2 = 0.1544$$

May from 1998-2017

$$y = -0.9514x - 0.2025$$
$$R^2 = 0.0334$$

June 1998-2017

$$y = -0.5764x - 0.1293$$
$$R^2 = 0.2638$$
The mine-site data shows the dependence of acidity C upon flow rate Q at C7 location on the ARD ditch.
The mine-site data shows the dependence of Cu concentration C upon flow rate Q at C7 location on the ARD ditch.

Flow Rate(Q) VS. Copper (C) at C7
March from 1998-2017

Flow Rate(Q) VS. Copper (C) at C7
April from 1998-2017

Flow Rate(Q) VS. Copper (C) at C7
May from 1998-2017

Flow Rate(Q) VS. Copper (C) at C7
June 1998-2017

y = -1.0941x - 0.0341
R² = 0.9359

y = -0.8243x - 0.2491
R² = 0.1789

y = -1.7451x - 0.0857
R² = 0.7781

y = -0.5277x - 0.0841
R² = 0.7042
The mine-site data shows the dependence of Cu concentration C upon flow rate Q at C7 location on the ARD ditch.

Flow Rate(Q) VS. Copper (C) at C7
- August from 1998-2017
 \[y = -0.0692x + 0.2175 \]
 \[R^2 = 0.115 \]

- September from 1998-2017
 \[y = -0.6557x - 0.0662 \]
 \[R^2 = 0.5301 \]

- October from 1998-2017
 \[y = -0.853x - 0.0145 \]
 \[R^2 = 0.9998 \]
The mine-site data shows the dependence of Iron concentration C upon flow rate Q at C7 location on the ARD ditch.

Flow Rate(Q) VS. Iron (C) at C7
March from 1998-2017

$$y = -0.212x - 0.1757$$
$$R^2 = 0.0729$$

Flow Rate(Q) VS. Iron (C) at C-7
April from 1998-2017

$$y = -0.4584x - 0.1898$$
$$R^2 = 0.0828$$

Flow Rate(Q) VS. Iron (C) at C7
May from 1998-2017

$$y = -0.6296x - 0.1237$$
$$R^2 = 0.0463$$

Flow Rate(Q) VS. Iron (C) at C7
June 1998-2017

$$y = -0.333x - 0.0594$$
$$R^2 = 0.3863$$
The mine-site data shows the dependence of Iron concentration C upon flow rate Q at C7 location on the ARD ditch.
The mine-site data shows the dependence of Mg concentration upon flow rate Q at C7 location on the ARD ditch.
The mine-site data shows the dependence of Mg concentration C upon flow rate Q at C7 location on the ARD ditch.
The mine-site data shows the dependence of Zn concentration \(C \) upon flow rate \(Q \) at C7 location on the ARD ditch.

- **March from 1998-2017**
 \[y = -0.2103x - 0.18 \]
 \(R^2 = 0.0979 \)

- **April from 1998-2017**
 \[y = -0.5078x - 0.1066 \]
 \(R^2 = 0.2551 \)

- **May from 1998-2017**
 \[y = -0.5169x - 0.1442 \]
 \(R^2 = 0.0286 \)

- **June 1998-2017**
 \[y = -0.5306x - 0.1029 \]
 \(R^2 = 0.3594 \)
The mine-site data shows the dependence of Zn concentration C upon flow rate Q at C7 location on the ARD ditch.

Flow Rate(Q) VS. Zn (C) at C7

- **July from 1998-2017**
 - $y = -0.6829x - 0.0927$
 - $R^2 = 0.5287$

- **August from 1998-2017**
 - $y = -0.3844x - 0.1504$
 - $R^2 = 0.2229$

- **September from 1998-2017**
 - $y = -0.2895x - 0.1552$
 - $R^2 = 0.2309$

- **October from 1998-2017**
 - $y = -0.2838x - 0.119$
 - $R^2 = 0.1777$

Ce = Saturation Concentration

$1/Q$ = Flow Rate(Q)
The mine-site data shows the dependence of Al concentration C upon flow rate Q at C7 location on the ARD ditch.
The mine-site data shows the dependence of Al concentration C upon flow rate Q at C7 location on the ARD ditch.
The mine-site data shows the dependence of Ca concentration C upon flow rate Q at C7 location on the ARD ditch.
The mine-site data shows the dependence of Ca concentration C upon flow rate Q at C7 location on the ARD ditch.
The mine-site data shows the monthly variation of $k\beta\lambda$ is in the same trend of the monthly rain-fall+snow-melt
Next steps

1. Improve the accuracy of scaling up by releasing the current assumption that λ is a constant. Actually, λ becomes larger when infiltration rate goes up.

2. Study seasonal effect on k.

3. Re-confirm the improved scaling-up method.

We are looking for collaborators who can provide ARD-ML testing data and/or mine-site monitoring data.