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CHAPTER 1
INTRODUCTION

1.1 Overview and Objectives

iningand milling (concentrating) of ore

M has aways been afundamental activity

of the human race, supplying the

metals, nonmetals, and minerals needed to maintain

and advance our standard of living. Therefore, itis

no coincidence that mining activity has grown in

intensity and complexity as human civilization has

grown and expanded. A simple testimony to this

symbiotic relationship ishuman epochslikethelron

and Bronze Ages. Other testimony comes from
historical reports of mining.

Documented mining for raw materials reaches
back to the Stone Age, with a 20,000-year-old
underground flint mine reported in alimestone cave
in Australia (James and Thorpe, 1994). Dueto the
demand for flint axes, several flint mines were
operating in Western Europe by 4000 B.C., with
hundreds of shafts dug to depths of 9-12 m.

Copper mining was underway at Rudna Glava,
Serbia, by 4500 B.C. to depths of 60 feet (Jamesand
Thorpe, 1994). By 2600 B.C., Egyptians were
mining turquoise and copper in the Negev of
northern Sina  with 6-meter-diameter  shafts
accompanied by asystem of underground workings.
About the same time, rock with silver and lead was
being mined near Athens using underground
workings driven up to 330 feet laterally into
hillsides. Cisternsfor water supply and orewashing
(milling) were excavated nearby into rock and lined
with cement.

Underground coal minesin Chinaarereported as
early as 200 BC while Roman coal minesin Britain
are reported around 100 A.D. (James and Thorpe,
1994). Ancient Romans also operated mines for
iron, gold, silver, tin, copper, and lead (Thornton,
1996). These included a copper mine at Cordoba,
Spain, with a 688-foot-deep shaft and a lead-silver
mine at El Centenillo with workings 3500 feet long
and 650 feet deep (James and Thorpe, 1994). The
Romans apparently developed relatively advanced
techniquesfor excavating, lighting, ventilating, and

draining mines, such as avertically staged series of
15-foot-diameter water wheels.

Duetoour relatively short lifespan, it can be easy
for people to overlook past lessons and advances.
Today, many think of past mining and milling
activities, even a hundred years ago, as primitive.
However, by thetime Agricola(1556) wrote histext
on mining and milling centuries ago, these activities
were aready refined sciences and arts. The
refinements continue today and will no doubt
continue into the future.

One rapidly growing refinement is the
incorporation of environmental maintenanceintothe
economics and engineering of mining. Thisis a
reasonabl e consequence of increasing environmental
awareness and the increasing intensity and
cumulative extent of mining. Some statistics
illustrate this best. By the Year 2000, Merrington
and Alloway (1994) expect that approximately
240,000 km? of the earth's surface will have been
disturbed by mining activity. In the Canadian
Province of Ontario, there are more than 6000
abandoned minesites with varying degrees of
environmental, safety, and health concerns(Mitchell
and Mackasey, 1995). In the USA, 17,000
abandoned mines are documented in the State of
Utah alone (Vance et al., 1995). Alsointhe USA,
aquatic life has been decimated in 4100 km of
88,000 km of streams within the Commonwealth of
Pennsylvania by acidic mine drainage (Scheetz et
al., 1995). The Chinese mining industry generates
an estimated 2.5x10° m*/yr of polluted water (Chen
and Huang, 1995) and Chinese coa mining alone
generates 150x10° t of waste a year (Hu, 1995).
This intense industrial activity around the world
must be accompanied by environmental protection
or restoration.

In the past, mining and milling were sometimes
considered sufficiently important to dismiss legally
corporate responsibility for adverse effects on the
local environment and health (Vranesh, 1979). Itis
interesting to read Weingart (1982), an ex-hardline
miner, publicly confessing his“sins” and accepting
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environmental responsibility. Thereisnolonger any
doubt that many mining companies place major
emphasis on environmental protection.  For
example, Robertson (1994a) reports that his
company will not mine sulfide-bearing ore if the
subsequent acid generation cannot be properly
prevented or controlled.

Blight (1979) summarized the mining-
environment issue well:
“It is well to concede at this point that any
mining or industrial activity will inevitably cause
some environmental damage. The overall
benefit to the country must be offset against this
damage. It must also be recognized that
whatever control measures are instituted, due
regard must be paid to local conditions and
current circumstances. The costs of the waste
disposal operation in relation to the revenue-
producing operation that must pay for it, the
practicability of the environmental protection
measures proposed, and the short and long-term
consequences of these measures, both for the
safety of the public and for their quality of life,
must all receive careful and due consideration.”
This is reflected in the current international
movement for sustainable devel opment.

There are some who oppose efforts to return the
environment at old minesites as close as possible to
pre-mining conditions. For example, an
international organization suggests that millions of
bats have been lost by closing and sealing
underground mines (Taylor, 1995). Also, Banks et
a. (1996) argue that minesite drainages with
elevated concentrations of some metals and lower
concentrations of others have historically played a
beneficial roles. They have provided or augmented
surface-water base flows, drinking-water supplies,
water treatment, spawaters, and secondary minerals
for paints and industrial processes. Nevertheless,
this opposition to restoration represents a minority
today.

Mining operations can have physical, chemical,
and biological effects on the local environment,
which consists of soil and rock (solid phase),
groundwater and surface waters (liquid phase), and
air and pore gases (gaseous phase). Any detailed
discussion of one effect or one phase alone can fill,

and has filled, several proceedings and books. In
this book, thefocusis primarily on the chemistry of
surface and ground waters draining from minesite
components.

In the fields of environmental geochemistry and
environmental hydrogeology, sufficient literatureon
many types of mining now exists to alow a
compilation of data to identify similarities and
highlight site-specific differences. This, in turn,
provides an opportunity to understand mining and
milling operations on a large scale in order to (1)
remedi ate closed minesites, (2) guideenvironmental
studies at existing operations, and (3) design
improved minesitesfor the future. The compilation
of data and the conceptual chemical models of
mining are the primary objectives of this book.

1.2 Organization of ThisBook

The next chapter, Chapter 2, describes the
various minesite components whose physical and
chemical characteristicsaffect the chemistry of their
drainages. Chapter 2 al so introducestheterminol ogy
used in this book. While most technical words are
used consistently around theworld, other termsvary
widely in their meaning and usage. Therefore,
clearer communication requires well-defined
terminology. For example, the word mine is used
here as a specific component (open pit or
underground working), whereasminesiterefershere
to a set of components. A Glossary is provided in
Appendix A to standardize technical meanings in
this book.

Chapter 3 provides a brief explanation of how
water drainsthrough and from minesite components.
This drainage occurs as surface and ground waters.
Consequently, Chapter 3 provides the physical
framework of water movement, onto which
chemistry is superimposed.

The remaining chapters are dedicated to the
chemistry of drainage waters. Chapter 4 describes
drainage chemistry through in-field case studies of
various minesite components. Chapter 5 then
explains and illustrates methods for predicting
drainage chemistry, and thus provides important
theoretical background of a practical nature.



Environmental Geochemistry of Minesite Drainage - Chapter 1

Chapter 6 discusses the geochemical aspects of
various methods for controlling the chemistry of
drainagewaters. Theappendicesprovide supporting
information for these chapters.

1.3 Questions

1-1. Many metals and minerals are obtained by
mining. How many objects have you
encountered in your life that were not derived
from, or affected by, mining? (Keep in mindthat
even asmooth piece of wood may have been cut
or trimmed by a metallic instrument fashioned
from mined metal.) Over the next 24 hours, note
how few non-mining-related objects you

encounter.

1-2. What would be the effect on our standard of
living if various types of mining, like gold,
copper, and potash mining, were halted?

1-3. What percentage of your country’s economic
production is derived from mining or mineral
processing?

1-4. Inyour community and country, do most people
recogni ze the contribution that mining makesto
the economy and their standard of living?

1-5. How much would you limit mining to protect
the environment near your home?
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