

ENVIRONMENTAL GEOCHEMISTRY OF MINESITE DRAINAGE: PRACTICAL THEORY AND CASE STUDIES, DIGITAL EDITION

by:

Kevin A. Morin and Nora M. Hutt

Canadian Cataloguing in Publication Data

Morin, Kevin A. (Kevin Andrew), 1955-Environmental geochemistry of minesite drainage [computer file]

ISBN 0-9682039-1-4

1. Mine drainage -- Environmental aspects. 2. Environmental geochemistry. I. Hutt, Nora M. II. Title. TD195.M48M67 2001 622'.5 C2001-910196-1

(ISBN for Paper Edition: 0-9682039-0-6)

© Kevin A. Morin and Nora M. Hutt

Published by:

MDAG Publishing Vancouver, British Columbia, Canada

Cover Photo Credit: BHP Minerals Canada Ltd., Island Copper Mine (photograph by Ian Audley Horne)

Dedicated to:

1) environmentally thoughtful mining in the 21st century

2) aloha 'aina domoni ni vanua (love of the environment)

3) future generations, to show that we managed as best we could the environmental legacy of our minesites and of those bequeathed to us

TABLE OF CONTENTS

LIST OF TABLES	vi
LIST OF FIGURES	viii
PREFACE AND ACKNOWLEDGMENTS	. xii
INTRODUCTION	1
1.1 Overview and Objectives	
1.2 Organization of This Book	
1.3 Questions	
LAYOUT OF MINESITES AND THEIR COMPONENTS	4
2.1 Overview and Terminology	
2.2 The Mine Component	
2.3 Ore Stockpiles, Low-Grade-Ore Stockpiles, and Waste-Rock Dumps	
2.4 Dams, Roads, and Building Foundations	
2.5 Tailings Impoundments and Mills	
2.6 Other Components	
2.7 Questions	
FLOW OF MINESITE DRAINAGE	. 21
3.1 Overview	
3.2 Drainage Flow through and from Mines	
3.2.1 Drainage Flow in Open-Pit Mines	
Case Study 3.2.1-1: Groundwater Depressurization in Pit Walls	
Case Study 3.2.1-2: Pre-mining Rock Dewatering	
3.2.2 Underground Mines	
Case Study 3.2.2-1: Fracture Studies at an Underground Mine	
Case Study 3.2.2-2: Detailed Fracture Studies at	
Underground Research Sites	. 37
Case Study 3.2.2-3: Types of Land-Surface Subsidence above	
Underground Mines	
Case Study 3.2.2-4: Small-scale Flow on Fracture Planes	. 40
Mine Through Faults	. 43
Case Study 3.2.2-6: Techniques to Manage Flow of Groundwater in	
Underground Workings	
Case Study 3.2.2-7: Finite-Element Modelling of Groundwater Flow	. 46
Case Study 3.2.2-8: Hydraulic Connections Between Land Surface	4.77
and an Underground Mine	
3.2.3 Drainage Flow in Placer and Solution Mines	
3.3 Drainage Flow from Stockpiles, Dumps, and Mined-Rock Piles	. 48
Case Study 3.3-1: Small-Scale Study of Drainage Movement Through Mined-Rock Piles	. 50
Case Study 3.3-2: Tracking Drainage Movement through a Mined-Rock Pile	
with Thermistors and Basal Monitoring Wells	
Case Study 3.3-3: Tracking Water Movement Below a Type 3 Dump	. 52

Case Study 3.3-4: A Type 2 Pile in a Dry Climate	52
Case Study 3.3-5: Importance of Delineating Subsurface Flowpaths	
Beneath Mined-Rock Piles	52
Case Study 3.3-6: Physical Hydrogeology of Coal Spoils (Waste Rock)	57
3.4 Drainage Flow from Tailings Impoundments	
Case Study 3.4-1: Runoff from Thickened Tailings	60
3.5 Questions	
DESCRIPTION AND ASSESSMENT OF DRAINAGE CHEMISTRY	63
4.1 Overview	63
4.2 General Description	63
4.2.1 Kinetic and Equilibrium Reactions	63
4.2.2 Three Stages of Drainage Chemistry	65
4.2.3 Four Classes of Drainage Chemistry	65
4.2.4 Bacterial Contributions to Drainage Chemistry	69
4.2.5 General Trends in Minesite-Drainage Chemistry	
4.2.6 Relationship of Drainage Chemistry to Flow and Loading	
Case Study 4.2-1: Chemical Effect of Secondary Minerals	
at a Reclaimed Coal Minesite	79
Case Study 4.2-2: Behavior of Cyanide in Minesite Drainage	79
Case Study 4.2-3: Drainage Chemistry at Potash Mines	
Case Study 4.2-4: Effect of Freezing and Permafrost on Drainage Chemistry	81
4.3 Drainage Chemistry from Mines	81
Case Study 4.3-1: Chemical Effect of Groundwater Drawdown	
Around Mine Components	81
Case Study 4.3-2: Pit Backfilled with Waste Rock	82
Case Study 4.3-3: General Assessment of an Open Pit	
and Surrounding Minesite Components	84
Case Study 4.3-4: Series of Type 1 Pits and Other Downgradient Components	
at One Minesite	85
Case Study 4.3-5: Trends of Mine-Floor pH in an Underground Mine	88
Case Study 4.3-6: Natural Flooding of a Large Open Pit	90
Case Study 4.3-7: Assisted Flooding of a Small Open Pit	
Case Study 4.3-8: Complex Seasonal Changes of Drainage through an	
Underground Mine	92
Case Study 4.3-9: Nitrogen in Drainage from Explosives	97
Case Study 4.3-10: An Extremely Acidic Underground Mine	97
Case Study 4.3-11: Natural Acidic Drainage	98
Case Study 4.3-12: Flooded Underground Mines (Mine Pools)	98
Case Study 4.3-13: Flooded Open Pit in a Wet-Dry Tropical Climate	109
Case Study 4.3-14: Placer Mining of an Aquifer Used for Water Supply	109
4.4 Drainage Chemistry from Stockpiles, Dumps, and Mine-Rock Piles	112
Case Study 4.4-1: Acidic Groundwater Drainage from an Acid-Generating	
Waste-Rock Dump	112
Case Study 4.4-2: Detailed Field Studies of Acid-Generating Waste-Rock	
Dumps Including Oxygen Levels and Temperature	113
Case Study 4.4-3: Heap Leaching of Existing Mined-Rock Piles	
Case Study 4.4-4: Retention of Cyanide After Alkaline Heap Leaching	116
Case Study 4.4-5: Alkaline Drainage from Cement	117
Case Study 4.4-6: A 20-Year Perspective on Heap Leaching	117

Case Study 4.4-7: Physical and Chemical Characterization of an	110
Acid-Generating Waste-Rock Dump	119
Case Study 4.4-8: Modelling of Mineral Reactions within	121
a Waste-Rock Dump	
4.5 Drainage Chemistry from Tailings Impoundments	
Case Study 4.5-1: Groundwater Drainage from an Acid-Generating	14
Uranium Tailings Impoundment	128
Case Study 4.5-2: Oxygen Entry into Sulfide-Bearing Tailings	
Case Study 4.5-3: Migration and Neutralization of Acidic Groundwater	120
Drainage from an Acidic Tailings Impoundment	130
Case Study 4.5-4: Detailed Hydrogeologic and Porewater Studies	100
at a High-Sulfide Tailings Impoundment	131
Case Study 4.5-5: Natural Massive-Sulfide Deposits and Gossans as	
Natural Analogs for the Distant Future	
of Minesite Components	133
Case Study 4.5-6: Drainage Chemistry from Phosphogypsum Tailings	
4.6 Questions	
PREDICTION OF DRAINAGE CHEMISTRY	139
5.1 Overview	139
5.2 Static Tests	139
5.2.1 Acid-Base Accounting (ABA)	
5.2.1.1 Paste and Rinse pH	
5.2.1.2 Sulfur Species and Acid Potentials	
5.2.1.3 Neutralization Potentials	
5.2.1.4 Net Potential Ratios and Net Neutralization Potentials	
5.2.1.5 International Static Database	158
Case Study 5.2.1-1: Comparison of Paste pH to Groundwater pH in an	4 = 0
Acid-Generating Tailings Impoundment	
Case Study 5.2.1-2: Study of Various NP Techniques	
Case Study 5.2.1-3: Pre-mining Prediction of Acid-Generating	
Waste Rock and Pit Walls	
Case Study 5.2.1-4: One Weighted ABA Average Per Minesite	165
Case Study 5.2.1-5: Net-Acid-Generating Zones in a Type 3 Waste-Rock	
Pile, and Accumulation of Acidity	166
along Basal Flowpaths	
Case Study 5.2.1-6: Pre-Mining Block Modelling of ABA Data	
Case Study 5.2.1-7: An Inappropriate ABA Analytical Standard	
Case Study 5.2.1-8: Errors in Predictions Using Static Tests	
5.2.2 Mineralogy	
5.2.3 Total-Metal and Whole-Rock Analysis	
5.2.5 Grain-Size Analysis and Particle-Surface Area	
Case Study 5.2.5-1: Grain Size, Surface Area, and Reaction Rates	
5.2.6 NAG Test	
5.3 Laboratory-Based Kinetic Tests	
5.3.1 Humidity Cells	
Case Study 5.3.1-1: Small-Scale Kinetic Testing	
Case Study 5.3.1-2: Effects of Changing Air Flow and Rinse-Water	102

	Volume on Humidity Cells	. 190
	Case Study 5.3.1-3: Net Acid Generation in Slow Oxidizing,	
	Non-Carbonate Tailings	
	5.3.2 Columns	. 192
	Case Study 5.3.2-1: Five-Year-Duration Column Testing on	
	Acid-Generating Waste Rock	. 192
	Case Study 5.3.2-2: Comparison of ABA Data to Kinetic-Test Results	. 194
	Case Study 5.3.2-3: Five-Year Kinetic Studies of Acid-Generating	
	Rock with Added Limestone	
	5.3.3 International Kinetic Database	. 198
	5.4 Field Kinetic Tests	. 204
	5.4.1 Bins or Cribs	. 204
	Case Study 5.4.1-1: Field Monitoring of Eleven 400-t Waste-Rock Piles	204
	Case Study 5.4.1-2: Fourteen-Year Monitoring of 1000-t Ore Piles	
	5.4.2 Minewall Stations	
	5.4.3 Routine Site Monitoring	
	5.5 Adjustments of Static and Kinetic Tests for Full-Scale Minesite Components	
	5.5.1 Portions of Components Exposed to Air and Water	
	5.5.2 Portions of Components Exposed to Water Only	
	5.6 Questions	
	5.0 Questions	
CON	TTROL OF DRAINAGE CHEMISTRY	. 224
	6.1 Reactive Control of Drainage Chemistry	
	6.1.1 Active Collection and Treatment	
	Case Study 6.1.1-1: Relative Costs of Treatment and Control	
	for Acidic Drainage	. 227
	Case Study 6.1.1-2: Loss of Injected Alkaline Process Water	
	at a Solution Mine	. 227
	Case Study 6.1.1-3: Reactive Control of Potash-Tailings Drainage	. 229
	Case Study 6.1.1-4: Remediation Studies at a	
	One-Hundred-Year-Old Minesite	. 230
	6.1.2 Passive Collection and Treatment	. 231
	Case Study 6.1.2-1: Passive Treatment of Ponded Acidic and	
	Metal-Laden Drainage with Scrap-Metal Electrodes	. 231
	Case Study 6.1.2-2: Passive Treatment of Acidic and	
	Metal-Laden Drainage with Wetlands	. 232
	Case Study 6.1.2-3: Passive Treatment of Acidic Drainage by Bacteria	
	Case Study 6.1.2-4: Anoxic Limestone Drains	
	6.2 Solid Covers	. 235
	Case Study 6.2-1: Covers and Other Techniques for Control of Cyanide and	
	Acidic Drainage in a Tropical Climate	. 235
	Case Study 6.2-2: Integrated Control of Waste-Rock Drainage and	
	Acidic Pit Water	237
	Case Study 6.2-3: Solid Covers on Waste Rock and Tailings	. 241
	Case Study 6.2-4: Cement Covers and Seals	. 242
	Case Study 6.2-5: Comparative Testing of Various Solid and Water Covers	
	and Chemical Additions	. 242
	Case Study 6.2-6: Multilayer Solid Covers	. 243
	Case Study 6.2-7: Predicted Oxygen Flux through a Non-Reactive Cover	. 244

Case Study 6.2-8: Thickened Tailings	245
Case Study 6.2-9: Reactive Treatment and Subsequent Effect of a Proactive	
Soil Cover over Acidic Waste Rock	
6.3 Water Covers	246
Case Study 6.3-1: Marine Disposal of Tailings and Waste Rock	2.45
with Soluble Heavy Metals	
Case Study 6.3-2: Reaction Rates of Submerged Rock and Tailings	
Case Study 6.3-3: Flooding of Previously Acidic Tailings	
Case Study 6.4-1: Backfill of Tailings	
Case Study 6.4-2: Pervious Surround	
Case Study 6.4-4: Effect of "Wet" Mine Seals on Drainage Chemistry	
Case Study 6.4-5: Layering of Mined Rock to Control Drainage Chemistry	
6.5 Questions	
0.5 Questions	237
REFERENCES	261
SUBJECT INDEX	289
MINESITE/MINING PROJECT/MINING AREA INDEX	297
CASE STUDY INDEX	200
CASE STUDI INDEA	477
AUTHOR INDEX	302
A. GLOSSARY	305
B. METHODS FOR STATIC TESTS	
B.1 Sulfur Species	
B.2 Bulk Neutralization Potential	
B.3 Carbonate Neutralization Potential	
B.4 Paste pH	
B.5 Rinse pH	
B.6 Net Neutralization Potentials	
B.7 Net Potential Ratios	320
C. METHODS FOR KINETIC TESTS	321
C.1 Initial Comments	
C.2 Laboratory-Based Tests	
C.2.1 Humidity Cell Startup Procedure	
C.2.2 Humidity Cell Weekly Operating Procedure	
C.2.3 Humidity Cell Closedown Procedure	
C.2.4 Humidity Cell Calculations	
C.3 Field-Based Tests	
C.3.1 On-Site Kinetic Tests	
C.3.2 On-Site Monitoring of Minesite Components	
6	
D. METHODS FOR MINEWALL STATIONS	332

LIST OF TABLES

2.1-1. Examples of Minesite Components Potentially Affecting Drainage Chemistry	5
3.2.1-1. Case Studies of Groundwater Flow to Pits	
3.2.2-1. Methods for Underground Water Control	45-46
4.2.1-1. Kinetic vs. Equilibrium Reactions	64
4.2.1-2. Examples of Sulfide Minerals	64
4.2.2-1. Examples of Secondary Minerals	67-68
4.2.3-1. Four Classes of Minesite Drainage Based on pH Effects of Primary Minerals	69
4.2.5-1. Annual Statistics for Drainage Chemistry at a Monitoring Station	
Receiving Drainages from Several Waste-Rock Dumps and an Open Pit	72
4.2.5-2. Example of an Empirical Drainage-Chemistry Model Including an Open Pit,	
Several Waste-Rock Dumps, and a Tailings Impoundment	76
4.2.5-3. Probability Levels and Corresponding Time Intervals within a Year	77
4.2.5-4. Example of Cyanide Degradation in Tailings Drainage,	
Golden Cross Project, New Zealand	
4.3-1. Water Chemistry in the Flooding Berkeley Pit	
4.3-2. Chemical Analyses of Bottom and Suspended Sediment in D Pit	
4.3-3. Examples of Drainage Chemistry from Underground Workings at Iron Mountain	
4.3-4. Range of Drainage Chemistry from Portals at Iron Mountain	
4.3-5. Vertical pH Profiles in Flooded Underground Shafts	
4.3-6. Temporal Trends in Mine-Pool Chemistry at Three Sites	
4.3-7. Vertical Trends in Water Chemistry in the Dober Mine Complex	105
4.3-8. Median Water Chemistry in Drainage and Monitor Wells	
in a Partially Flooded Underground Coal Mine	108
4.3-9. Water Chemistry in Flooded Pits and Surrounding Groundwater Systems,	
Northern Territory, Australia	110
4.4-1. Dissolved Concentrations in Groundwater Beneath Acid-Generating	
Waste Rock at a Uranium Minesite	113
4.4-2. Measurements of Thermal Conductivity, Air Permeability, and	
Oxygen Diffusion Coefficients in Waste-Rock Dumps	
4.4-3. Calculated Large-scale Oxidation Rates in Waste-Rock Dumps	
4.4-4. Waste-Rock Drainage Chemistry in Ditches, Aitik Minesite	
4.4-5. Mineralogy of Fresh Waste Rock at the Aitik Minesite	
4.5-1. Sources and Rates of Metal Release from a Tailings Impoundment	
4.5-2. Concentrations in an Acidic Tailings Pond at a Uranium Mine	130
4.5-3. Attenuation of Acidic Drainage from a Tailings Impoundment	100
Along a Groundwater Flowpath	132
4.5-4. Zones and Mineralogy of Gossan and Supergene Zones of Massive-Sulfide	10.0
Deposits of the Bathurst Area, New Brunswick, Canada	136
4.5-5. Enrichment or Depletion in Oxidized Massive-Sulfide Deposits	107
of the Bathurst Area of Canada	
5.2.1-1. Relative Reaction Rates of Minerals Contributing to Acid Neutralization	
5.2.1-2. Factors for Converting Amounts of Selected Aluminosilicate Minerals to NP Values	
5.2.1-3. Universal ABA Criteria for Assessing or Predicting pH Range of Minesite Drainage	
5.2.1-4. Comparison of Five NP Techniques for Acid-Base Accounting	
5.2.1-5. ABA Results for the Gibraltar North Project, Canada	
5.2.1-6. Vertical Trends in ABA Parameters in Boreholes, Myra Falls Operations	
5.2.1-7. Summary Statistics in ABA Parameters in Boreholes, Myra Falls Operations	168

5.2.1-8. Summary Parameters for Windy Craggy Semivariograms	170
5.2.2-1. Example of Reactive-Mineral Composition of Tailings	176
5.3.1-1. Effect of Grain Size on Reactive Surface Area	
5.3.2-1. Pre-test Analysis of Grain Sizes of Woodlawn Waste Rock	193
5.3.2-2. Metal Concentrations and Release Rates from Woodlawn Waste Rock	
5.3.2-3. Five-Year Column Tests of Limestone Mixed With Net-Acid-Generating Rock	196
5.3.2-4. Results of Mixed Limestone-Rock Columns	
5.3.2-5. Five-Year On-Site Piles of Net-Acid-Generating Rock	199
5.4.1-1. Composition of Eleven 400-t Waste-Rock Piles Monitored for One Year	205
5.4.1-2. Description of Field Test Piles for Duluth Complex Rock	
5.4.1-3. Values of Effective Neutralization Potential in Duluth Complex Test Piles	207
5.4.2-1. Average Minewall Production Rates (mg/m²/wk) from an Underground Mine	210
5.4.2-2. Average Minewall Production Rates (mg/m²/wk) from a Pit	
5.4.2-3. Adjusted Rates of Acid Leaching and Flow Dependencies in an Underground Mines	213
5.4.2-4. Partial Input Data for the Simulation of the Main Zone Pit at Equity Silver Mines	
5.5.1-1. General Extent of Air Exposure for Typical Minesite Components	
5.5.1-2. Examples of Values and Equations for Effective Diffusion Coefficients	
for Gaseous Oxygen Within Mine-Component Materials	218
5.5.2-1. Saturation Concentrations of Dissolved Oxygen in Water Based on	
Temperature and Percentage of Oxygen in the Adjacent Gas Phase	221
6.1.1-1. Cost Comparison of Five Proactive Prevention Techniques Against	
Collection and Treatment for Acidic Drainage	228
6.1.1-2. Cost Comparison of Reactive and Proactive Control Techniques	
for Acidic Drainage from Waste Rock and Tailings	228
6.1.2-1. Examples of Wetland-Treated Drainage in a Temperate Climate	
6.1.2-2. Examples of Twenty-One Anoxic Limestone Drains	234
6.2-1. Metal-Release Rates from Various Minesite Components during	
the 1973-1974 Wet Season at the Rum Jungle Minesite	238
6.2-2. Loadings in the East Finniss River Downstream of the Rum Jungle Minesite	239
6.2-3. Water Balance for Dumps at the Rum Jungle Minesite	240
6.2-4. Small-Scale Efficiencies of Techniques for Minimizing Acid Generation	243
6.2-5. Trend in Drainage Chemistry from a Waste-Rock Dump with Multilayer Cover	244
6.3-1. Metal Release Rates from Marine Tailings Disposal, Black Angel Mine, Greenland	
6.3-2. Laboratory Columns for Submergence of Acid-Generating Tailings	251
6.4-1. Examples of Tailings Retrieval from Surface Impoundments	254
6.4-2. Drainage Chemistry Behind Wet Portal Seals in West Virginia, USA	-259
B-1. Volumes and Normalities of Acid Addition for NP Determination on Fizz Rating	315
C-1. Recommended Equations for Interpreting Laboratory Kinetic Tests	-330

LIST OF FIGURES

2.1-1. Schematic Diagram of a Minesite	. 6
2.2-1. Schematic Open-Pit Mining - Type 1	
2.2-2. Schematic Open-Pit Mining - Type 2	. 9
2.2-3. Schematic Open-Pit Mining - Type 3	
2.2-4. Photographs of Various Types of Open Pits	11
2.2-5. Schematic Underground Mining - Type 1	12
2.2-6. Schematic Underground Mining - Type 2	13
2.2-7. Photographs of Various Types of Underground Mines	14
2.2-8. Schematic Placer and Solution Mining	15
2.5-1. Photographs of Tailings Impoundments	18
2.5-2. Typical Process and Terminology for Coal Milling	
3.2-1. Computer-Based Example of Fractured Rock and Groundwater Flow	23
3.2.1-1. Schematic Water Movement In and Near Open-Pit Mines During Operation	24
3.2.1-2. Schematic Pit Filling by Natural Processes During Closure	
3.2.1-3. Schematic Pit Filling by Assisted Methods During Closure	
3.2.1-4. Schematic Pit Filled to its Static Level	
3.2.2-1. Schematic Underground Mines Free Draining to Surface or Shaft	
3.2.2-2. Schematic Underground Mines during Closure with No Portal Plugging	
3.2.2-3. Schematic Underground Mines during Closure with Fully Plugged Portals	
3.2.2-4. Formation of a Pressure Arch during Underground Mining	
3.2.2-5. Rock Collapse and Tension Zones during Subsidence	
3.2.2-6. Example of Kinematic, Diffusion, and Residual Porosities	
3.2.2-7. Fracture Patterns in Closely Spaced Boreholes at the Stripa Project	
3.2.2-8. Changes in Water Pressure within Selected Fractures at the Stripa Project	38
3.2.2-9. Predicted and Measured Head Losses during Mining	•
through a Fracture Plane at URL	
3.2.2-10. Discrete Fracture Permeabilities at URL	
3.2.2-11. Fracture Permeabilities at Colorado School of Mines' Experimental Mine	
3.2.2-12. Piezometric Drawdowns after Excavation of the Pan Adit	
3.2.2-13. Drawdown As Adit Excavation Approaches Piezometer	
3.2.2-14. Piezometric Drawdowns after Excavation of the Western Adit	
3.3-1. Mined-Rock Pile - Type 1: (a) schematic, (b) photograph	
3.3-2. Mined-Rock Pile - Type 2: (a) schematic, (b) photograph	
3.3-3. Mined-Rock Pile - Type 3: (a) schematic, (b) photograph	
3.3-4. Conceptual Model of Channelized Drainage Flow through a Mined-Rock Pile	
3.3-6. Layout of Myra Falls Operations and Dump #1	
3.3-7. Internal Temperatures in Dump #1 Through 1991	
3.3-8. Response of Internal Temperatures and Basal Water Table in Dump #1	
3.3-9. Cross-section through the Coedely Spoil Pile, Great Britain	
3.3-10. Cross-section through the Diplomat Mine Coal Spoils Pile in a Backfilled Pit	
3.3-11. Cross-section through the Mt. Washington Minesite	
3.3-12. Schematic Cross-section of a Coal Waste-Rock Dump	
3.4-1. Examples of Tailings Grain Sizes from Metal Mines	
3.4-2. Particle-Size Segregation in a Tailings Impoundment	
3.4-3. Hydraulic-Conductivity Pattern in Thickened Tailings	
3.4-4. Depth to Water Table in a Tailings Impoundment	
	50

3.4-5. Vertical Cross-section Showing Groundwater Movement	
through a Tailings Impoundment	60
4.2.1-1. Evolution of Kinetic to Equilibrium Conditions	63
4.2.2-1. Three Stages of Minesite-Drainage Chemistry	66
4.2.4-1. Example of Short-Term Effects from Inoculating	
Humidity Cells with Thiobacillus ferrooxidans	70
4.2.5-1. Examples of Empirical Drainage-Chemistry Correlations with pH	73
4.2.5-2. Examples of Copper vs. pH Correlations at Three Minesites	
4.2.5-3. Simulations of Less-Frequent Sampling with a Database of Samples	
Collected Every Four Hours (adapted from Morin et al., 1993)	78
4.2.6-1. Scatterplots of Flow against Copper and Zinc	78
4.3-1. Plan and Cross-section of the Solbec Pit	83
4.3-2. Map, Groundwater Flow, and Acidic Zone at Brunswick No. 6 Minesite	86
4.3-3. Map of the Midnite Minesite	87
4.3-4. Simplified Vertical Cross-section through Part of the Bunker Hill Mine	
with Mine-Floor pH Measurements	89
4.3-5. Monitoring of Flow and Chemistry on Level 8, Myra Falls Operations	94
4.3-6. Flow and pH at Portal, Flow at Stope Y, and Daily Precipitation,	
Myra Falls Operations	95
4.3-7. Schematic Flow through Time on Level 8, Myra Falls Operations	
4.3-8. Cross-section through Iron Mountain	
4.3-9. Vertical Profiles of Specific Conductance in Flooded Mine Shafts	
4.3-10. Vertical Profiles of Water Chemistry in a Flooded Shaft	
4.3-11. Layout of the Dober Mine Complex	
4.3-12. Vertical Cross-section through the Keystone Park Underground Coal Mines	
4.3-13. Plan View of the Keystone Park Underground Coal Mine	
4.3-14. Temporal Trends of Acidity and Flow in Drainage	
from the Keystone Park Underground Coal Mine	106
4.3-15. Temporal Trend of Sodium in Drainage from the Keystone Park Underground	
Coal Mine Following Alkaline Injection at Two Wells	107
4.3-16. Temporal Trends of Acidity, Sulfate, and Flow in Drainage from the	
Friendship Hill Underground Coal Mine	109
4.3-17. Viney Creek Placer Minesite and Nearby Water-Supply Wellfield and National Park	
4.3-18. Temporal Trends in Groundwater Iron Concentrations Before and	
Afer Placer Mining at Viney Creek Minesite	111
4.4-1. Vertical Cross-section through Acidic Groundwater Drainage	
from a Uranium-Mining Waste-Rock Dump	112
4.4-2. Depth Profiles of Poregas in White's (A, B, D) and Intermediate (X, Y, Z)	
Dumps at the Rum Jungle Minesite	115
4.4-3. Profiles of Oxygen Levels in the Aitik Dump Through Time	115
4.4-4. Observed and Calculated Copper Leaching from the 12-m high Midas Test Dump	
4.4-5. Acidity Concentrations in Dump Drainage at Mine Doyon	
4.4-6. Temporal Trends of pH and Sulfate at Station NDD	123
4.4-7. Temporal Trends of pH and Sulfate at Station EDD	
4.5-1. Sub-Region Neutralization of Acidic Drainage Along Flowpaths	
4.5-2. Groundwater Seepage from a Uranium Tailings Impoundment, Wyoming, USA	
4.5-3. Migration and Progressive Neutralization of Acidic Groundwater Drainage	
from an Acidic Tailings Impoundment	131
4.5-4. Plan Map and Vertical Cross-section through the	
East Sullivan Tailings Impoundment	133

4.5-6. Vertical Profiles of Pore Gases and Porewater Concentrations	
in the East Sullivan Tailings	134
5.2.1-1. Examples of ABA Total Sulfur vs. Sulfide	143
5.2.1-2. Examples of ABA Total Sulfur/Sulfide vs. Paste pH	144
5.2.1-3. Examples of ABA Total Sulfur vs. Sulfate	
5.2.1-4. Examples of ABA Paste pH vs. Sulfate	146
5.2.1-5. Examples of ABA Neutralization Potential (NP) vs. Paste pH	
5.2.1-6. Examples of ABA Bulk NP vs. Carbonate NP (CaNP)	
5.2.1-7. Examples of ABA xNPR vs. Total Sulfur and NP	
5.2.1-8. Examples of ABA xNNP vs. NP and Sulfur	
5.2.1-9. Examples of ABA xNPR vs. Paste pH	
5.2.1-10. Examples of ABA xNNP vs. Paste pH	
5.2.1-11. Examples of ABA xNPR vs. xNNP	
5.2.1-12. Lognormal Distribution of Total Sulfur across an Entire Mine	
5.2.1-13. Variability of ABA Parameters Within and Across Strata:	
(a) Sedimentary Terrain, (b) Volcanic Terrain	159-160
5.2.1-14. Paste pH vs. Neutralization Potential from the International Static Database	
5.2.1-15. Solid-Phase Paste pH in a Cross-section of the Nordic Main Tailings Impoundment	
5.2.1-16. Groundwater Aqueous pH in a Cross-section	
of the Nordic Main Tailings Impoundment	162
5.2.1-17. Minesite Averages of NNP vs. Hectares Per Hole at Each Minesite	
5.2.1.18. Minesite Averages of Net Alkalinity vs. Minesite-Average NP	
5.2.1-19. ABA Profile along Borehole 25, Myra Falls Operations	
5.2.1-20. ABA Profile along Borehole 15, Myra Falls Operations	
5.2.1-21. Aqueous pH along Basal Flowpath in Dump	
5.2.1-22. Correlation of NP to Calcium in the Windy Craggy Database	
5.2.1-23. Kriging Semivariogram for Argillite at Windy Craggy	
5.2.1-24. Geostatistical Block Modelling of NPR at Las Cristinas	
5.2.1-25. Kriging Variograms for All Rock Units and Sulfide Saprolite Only	
5.2.1-26. Total-Sulfur Analyses for a Standardized ABA Sample by Several Laboratories	
5.2.1-27. NP Analyses for a Standardized ABA Sample by Several Laboratories	
5.2.1-28. Comparison of 34 NP Analyses at Two Laboratories	
5.2.6-1. Comparison of Times to Acidification in Columns	
to Times for pH Depression in NAG Tests	179
5.3.1-1. Examples of Aqueous pH and Rates of Sulfate Production and	
Acid Neutralization in Humidity Cells Remaining Near Neutral pH	183
5.3.1-2. Examples of Leaching Rates of Copper and Zinc in Humidity Cells	
Remaining Near Neutral pH	184
5.3.1-3. Examples of Aqueous pH and Rates of Sulfate Production and	
Acid Neutralization in Humidity Cells Becoming Acidic	185
5.3.1-4. Examples of Leaching Rates of Copper and Zinc in Humidity Cells	
Becoming Acidic	186
5.3.1-5. Examples of Aqueous pH and Rates of Sulfate Production and	
Acid Neutralization in Humidity Cells Remaining Acidic	187
5.3.1-6. Examples of Leaching Rates of Copper and Zinc in Humidity Cells	
Remaining Acidic	188
5.3.1-7. Examples of Aqueous pH and Rates of Sulfate Production and	20
Acid Neutralization in Humidity Cells Remaining Alkaline	189
5.3.1-8. Examples of Leaching Rates of Copper and Zinc in Humidity Cells	
Remaining Alkaline	189

5.3.1-9. Trends in Drainage Chemistry and Remaining Calcite	
from Small-Scale Kinetic Tests	190
5.3.1-10. Sulfate Release Rate vs. Original Sulfide Content from Small-Scale Kinetic Tests	191
5.3.2-1. Poregas Composition of Woodlawn Waste Rock in Leach Column	193
5.3.2-2. Temporal Trends of Effluent Chemistry from Cinola Columns	195
5.3.2-3. Correlations of Geochemical Events with NP from Cinola Columns	197
5.3.3-1. Examples of Two-Dimensional Plots of IKD Data	200
5.3.3-2. Carbonate Molar Ratio vs. Initial Sulfur and Initial NP in the IKD	201
5.3.3-3. Copper Leaching Rate vs. Initial Sulfur and Initial Copper Content in the IKD	202
5.3.3-4. Zinc Leaching Rate vs. Initial Sulfur and Initial Zinc Content in the IKD	203
5.4.1-1. Annual Median Drainage pH for In-Field 1000-t Test Piles	206
5.4.2-1. Best-Fit Simulation of pH in the Main Zone Pit	
During Operation and Decommissioning	214
5.5.1-1. Conceptual Column for Calculating Oxygen Diffusion and Depth of Oxidation	217
5.5.2-1. Conceptual Submerged Column for Calculating Oxygen Diffusion	
6-1. Example of Designing Drainage-Chemistry Control with a Clay Cover	225
6-2. Example of Designing Drainage-Chemistry Control with Inert-Soil and Water Covers	
6.1.1-1. Plan View of Subsurface Migration of Potash-Tailings Brine	
6.2-1. Cyanide Balance from the Mill to the Kelian River at Kelian Equatorial Mining	
6.2-2. Schematic Map of the Rum Jungle Minesite	
6.2-3. Temporal Trends in Oxygen and Temperature below a Multilayer Cover	244
6.2-4. Temporal Trends in Loadings of Acidity, Zinc, and Copper	
to the Equity Silver Treatment System	
6.2-5. Temporal Trends in Lime Consumption in the Equity Silver Treatment System	
6.3-1. Effluent pH from Waste-Rock Columns with and without Water Covers	
6.3-2. Schematic Flooding of Acid-Generating Quirke Tailings	252
6.4-1. Relationship of Drainage pH to Aqueous Concentrations of Acidity, Iron,	
and Manganese from Wet Portal Seals	
C-1. Humidity Cell for Rock	
C-2. Humidity Cell for Tailings	
C-3. Pre-Test Sample Description for Kinetic-Test Samples	
C-4. Weekly Report Form for Kinetic Testing	
D-1. Example of a Minewall Station	333

PREFACE AND ACKNOWLEDGEMENTS

This book has three purposes. First, it is a *guidebook* for the assessment, prediction, and control of minesite-drainage chemistry. The chapters on these tasks emphasize practical, rather than theoretical, concepts. As demonstrated here, the abundant conflicting theories on drainage chemistry are, for the most part, unimportant to the practical requirements of many minesites.

Second, this is a *reference book* containing numerous case studies on various aspects of drainage chemistry. These illustrate the many different views of drainage-chemistry work around the world and are valuable in extrapolating conclusions to other minesites. Case studies are used heavily in this book to illustrate common themes and to highlight atypical findings.

Third, this is a *textbook* to present the state-of-the-art in minesite drainage to fellow students on the topic. The questions at the end of each chapter provoke additional thought and insight into important issues. No matter what level of experience and age, there is something new and informative in this book for every reader.

Based on our work with more than 130 proposed and existing minesites, and on reviews of hundreds of papers and reports by many others, these three ambitious purposes have been attained here in a reasonably compact book. We welcome copies of other papers and reports that readers consider important and valuable to future compilations.

We have noticed there is confusion sometimes between minesite-drainage chemistry and water-quality impacts. The emphasis in this book is on the chemistry of waters draining from various minesite components. In the jargon of hydrologic studies, the focus is on "headwater" chemical effects in and around a minesite. There is little emphasis on "downstream" chemistry in distant rivers and lakes, where regional water-quality and biological impacts are defined by applicable legislation and social expectations. Consistent with this view, "water quality", which implies comparison to some standard, is rarely used here.

A book like this on theory and case studies cannot be created in isolation from other people — no one person could carry out all these studies and interpretations. Therefore, there are many people and publications that we have depended on, and learned from. Obviously, the efforts of all authors listed in the References are important and gratefully recognized. We are especially grateful to the people who provided technical and editorial comments on various chapters of this book:

Les MacPhie, Geocon/SNC—Lavalin Environment [Chapters 1 to 6] Peri Mehling, Mehling Environmental Management [Chapters 1 and 2] Gavin Murray, Placer Pacific Limited [Chapters 1 to 6] Jim Robertson, Placer Dome Inc. [Chapters 3 to 6]

We also acknowledge the time and efforts of those that we have worked with professionally and personally, who are employed by mining companies, regulatory agencies, universities, consulting firms, and laboratories. With mining companies, we offer particular thanks to Jim Robertson (Placer Dome Inc.), Keith Ferguson (Placer Dome Canada), Gavin Murray (Placer Pacific Limited), Vern Coffin (Noranda Mining and Exploration), Ross Gallinger (Rio Algom Limited), Ian Horne (formerly with BHP Minerals Canada), Derek Riehm (Teck Corporation), Luc St-Arnaud (Noranda Technology Centre), and Kelvin Dushnisky (Redfern Resources Ltd.)

To those with regulatory agencies, we have particularly benefited from discussions with Bill Price (British Columbia Ministry of Employment and Investment, Energy and Minerals Division), Grant Feasby, Gilles Tremblay, and Carl Weatherell (MEND/Natural Resources Canada), and Kim Lapakko (Minnesota Department

of Natural Resources).

The university professors we wish especially to thank are John Cherry and David Blowes (University of Waterloo) and Ernest Yanful (University of Western Ontario).

We have benefited greatly from discussions with fellow consultants, particularly Les MacPhie and Maciej Szymanski (Geocon/SNC-Lavalin Environment), Clem Pelletier (Rescan Environmental Services), Ron Nicholson (Beak Consultants), and Shirley Hutt (Ocean Bound Enterprises).

On a personal level, Kevin thanks Catherine, Karla, Kathy, Larry, Karen, Joe, Keith, Robin, Kirk, David, Jennifer, Christina, Laura, Kyle, Drew, Amanda, and the rest of the gang. Nora thanks Shirley, George, and Noreen.

Kevin Morin Nora Hutt Vancouver, British Columbia, Canada March, 1997

CHAPTER 1 INTRODUCTION

1.1 Overview and Objectives

ining and milling (concentrating) of ore has always been a fundamental activity of the human race, supplying the metals, nonmetals, and minerals needed to maintain and advance our standard of living. Therefore, it is no coincidence that mining activity has grown in intensity and complexity as human civilization has grown and expanded. A simple testimony to this symbiotic relationship is human epochs like the Iron and Bronze Ages. Other testimony comes from historical reports of mining.

Documented mining for raw materials reaches back to the Stone Age, with a 20,000-year-old underground flint mine reported in a limestone cave in Australia (James and Thorpe, 1994). Due to the demand for flint axes, several flint mines were operating in Western Europe by 4000 B.C., with hundreds of shafts dug to depths of 9-12 m.

Copper mining was underway at Rudna Glava, Serbia, by 4500 B.C. to depths of 60 feet (James and Thorpe, 1994). By 2600 B.C., Egyptians were mining turquoise and copper in the Negev of northern Sinai with 6-meter-diameter shafts accompanied by a system of underground workings. About the same time, rock with silver and lead was being mined near Athens using underground workings driven up to 330 feet laterally into hillsides. Cisterns for water supply and ore washing (milling) were excavated nearby into rock and lined with cement.

Underground coal mines in China are reported as early as 200 BC while Roman coal mines in Britain are reported around 100 A.D. (James and Thorpe, 1994). Ancient Romans also operated mines for iron, gold, silver, tin, copper, and lead (Thornton, 1996). These included a copper mine at Córdoba, Spain, with a 688-foot-deep shaft and a lead-silver mine at El Centenillo with workings 3500 feet long and 650 feet deep (James and Thorpe, 1994). The Romans apparently developed relatively advanced techniques for excavating, lighting, ventilating, and

draining mines, such as a vertically staged series of 15-foot-diameter water wheels.

Due to our relatively short lifespan, it can be easy for people to overlook past lessons and advances. Today, many think of past mining and milling activities, even a hundred years ago, as primitive. However, by the time Agricola (1556) wrote his text on mining and milling centuries ago, these activities were already refined sciences and arts. The refinements continue today and will no doubt continue into the future.

One rapidly growing refinement is the incorporation of environmental maintenance into the economics and engineering of mining. This is a reasonable consequence of increasing environmental awareness and the increasing intensity and cumulative extent of mining. Some statistics illustrate this best. By the Year 2000, Merrington and Alloway (1994) expect that approximately 240,000 km² of the earth's surface will have been disturbed by mining activity. In the Canadian Province of Ontario, there are more than 6000 abandoned minesites with varying degrees of environmental, safety, and health concerns (Mitchell and Mackasey, 1995). In the USA, abandoned mines are documented in the State of Utah alone (Vance et al., 1995). Also in the USA, aquatic life has been decimated in 4100 km of 88,000 km of streams within the Commonwealth of Pennsylvania by acidic mine drainage (Scheetz et al., 1995). The Chinese mining industry generates an estimated 2.5x10⁹ m³/yr of polluted water (Chen and Huang, 1995) and Chinese coal mining alone generates 150x10⁶ t of waste a year (Hu, 1995). This intense industrial activity around the world must be accompanied by environmental protection or restoration.

In the past, mining and milling were sometimes considered sufficiently important to dismiss legally corporate responsibility for adverse effects on the local environment and health (Vranesh, 1979). It is interesting to read Weingart (1982), an ex-hardline miner, publicly confessing his "sins" and accepting

environmental responsibility. There is no longer any doubt that many mining companies place major emphasis on environmental protection. For example, Robertson (1994a) reports that his company will not mine sulfide-bearing ore if the subsequent acid generation cannot be properly prevented or controlled.

Blight (1979) summarized the miningenvironment issue well:

"It is well to concede at this point that any mining or industrial activity will inevitably cause some environmental damage. The overall benefit to the country must be offset against this It must also be recognized that whatever control measures are instituted, due regard must be paid to local conditions and current circumstances. The costs of the waste disposal operation in relation to the revenueproducing operation that must pay for it, the practicability of the environmental protection measures proposed, and the short and long-term consequences of these measures, both for the safety of the public and for their quality of life, must all receive careful and due consideration." This is reflected in the current international movement for sustainable development.

There are some who oppose efforts to return the environment at old minesites as close as possible to pre-mining conditions. For example, an international organization suggests that millions of bats have been lost by closing and sealing underground mines (Taylor, 1995). Also, Banks et al. (1996) argue that minesite drainages with elevated concentrations of some metals and lower concentrations of others have historically played a beneficial roles. They have provided or augmented surface-water base flows, drinking-water supplies, water treatment, spa waters, and secondary minerals for paints and industrial processes. Nevertheless, this opposition to restoration represents a minority today.

Mining operations can have physical, chemical, and biological effects on the local environment, which consists of soil and rock (solid phase), groundwater and surface waters (liquid phase), and air and pore gases (gaseous phase). Any detailed discussion of one effect or one phase alone can fill,

and has filled, several proceedings and books. In this book, the focus is primarily on the chemistry of surface and ground waters draining from minesite components.

In the fields of environmental geochemistry and environmental hydrogeology, sufficient literature on many types of mining now exists to allow a compilation of data to identify similarities and highlight site-specific differences. This, in turn, provides an opportunity to understand mining and milling operations on a large scale in order to (1) remediate closed minesites, (2) guide environmental studies at existing operations, and (3) design improved minesites for the future. The compilation of data and the conceptual chemical models of mining are the primary objectives of this book.

1.2 Organization of This Book

The next chapter, Chapter 2, describes the various minesite components whose physical and chemical characteristics affect the chemistry of their drainages. Chapter 2 also introduces the terminology used in this book. While most technical words are used consistently around the world, other terms vary widely in their meaning and usage. Therefore, clearer communication requires well-defined terminology. For example, the word *mine* is used here as a specific component (open pit or underground working), whereas *minesite* refers here to a set of components. A Glossary is provided in Appendix A to standardize technical meanings in this book.

Chapter 3 provides a brief explanation of how water drains through and from minesite components. This drainage occurs as surface and ground waters. Consequently, Chapter 3 provides the physical framework of water movement, onto which chemistry is superimposed.

The remaining chapters are dedicated to the chemistry of drainage waters. Chapter 4 describes drainage chemistry through in-field case studies of various minesite components. Chapter 5 then explains and illustrates methods for predicting drainage chemistry, and thus provides important theoretical background of a practical nature.

Chapter 6 discusses the geochemical aspects of various methods for controlling the chemistry of drainage waters. The appendices provide supporting information for these chapters.

1.3 Questions

1-1. Many metals and minerals are obtained by mining. How many objects have you encountered in your life that were not derived from, or affected by, mining? (Keep in mind that even a smooth piece of wood may have been cut or trimmed by a metallic instrument fashioned from mined metal.) Over the next 24 hours, note how few non-mining-related objects you

encounter.

- 1-2. What would be the effect on our standard of living if various types of mining, like gold, copper, and potash mining, were halted?
- 1-3. What percentage of your country's economic production is derived from mining or mineral processing?
- 1-4. In your community and country, do most people recognize the contribution that mining makes to the economy and their standard of living?
- 1-5. How much would you limit mining to protect the environment near your home?